
NASA Contractor Report Y 181847

ICASE Report No. 89-33

ICASE
INDIRECT ADDRESSING AND LOAD BALANCING FOR
FASTER SOLUTION TO MANDELBROT SET ON SIMD
ARCHITECTURES

Sherry1 Tornboulian

Contract No. NAS1-18605
May 1989

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(HASA-CB-9818 47) IIDXRI&CT ADDRESSIBG 1IN D 189-27390
LOAD BALIPSCING FOR PASTEB SOLUTION TO
MAANDELBROT SET ON SIHD BBCHITECTUBES Final
Report (ICASE) 1 1 p CSCL 098 G3 Unclas

#/dl 0224026

Indirect Addressing and Load Balancing for Faster
Solution to Mandelbrot Set on SIMD Architectures

Sherry1 Tomboulian *
MasPar Computer Corporation

2840 San Tomas Exprswy, Suite 140, Santa Clara, CA 95051
Abstract

SIMD computers with local indirect addressing allow programs to have queues and
buffers, making certain kinds of problems much more efficient. In particular we examine
a class of problems characteriaed by computations on data points where the computation
is identical, but the convergence rate is data dependent. Normally, in this situation, the
algorithm time is governed by the maximum number of iterations required by each point.
Using indirect addressing allows a processor to proceed to the next data point when it is
done, reducing the overall number of iterations required to approach the mean convergence
rate when a sufficiently large problem set is solved. Load balancing techniques can be
applied for additional performance improvement. Simulations of this technique applied to
solving Mandelbrot Sets indicate significant performance gains.

'This research wad supported by the National Aeronautics and Space Adminiatration under NASA Contract
No. NAS1-18605 while the author was in residence at the Inrtitute for Computer Applfcations in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1

1 Introduction

The parallelism of SIMD architecturea provides significant improvement in computation speed
for many applications. However, one is limited by the synchronous nature of such an engine,
which requires that all processors perform the same task at the same time. In SIMD architec-
tures that provide hardware for local indirect addressing, some of the sequential restrictions can
be alleviated, making such architectures appear more closely aligned to the MIMD paradigm.
This paper examines a powerful use of local indirect addressing for performing computations
with data-dependent convergence rates - some points converge in a few iterations while others
require numerous iterations. Load Balancing techniques, typically considered a strictly MIMD
technique, are brought into play. In particular, we examine the solution to the Mandelbrot Set
using this method. Simulation results show significant speed improvements with modest code
investment. The basic scheme can be generalized to a class of problem.

We assume a SIMD machine model with local indirect addressing, henceforth called SIM-
LAD [8]. SIMD implies that all processors do the same thing at the same time, and that
each processor has an area of local memory. It is often assumed that a pure SIMD model also
restricts the processors to performing their actions on the same areas of their local memory.
While this was true of some architectures such as the MPP [l], the ICL-DAP [7] , and the
Connection Machine 1(6], it is not a requirement. Now the Connection Machine 2 and designs
of other new SIMD architectures, such as the BLITZEN [2] are including SIMLAD, suggesting
a trend in this direction.

In the SIMLAD model, as in the “standard” SIMD model, each processor has its own local
memory. However, the address specified by an instruction can be part of each processors local
state. For instance, in the MF’P, when an instruction is issued each processor does the same
thing to the same area of its local memory - e.g. all processors add 1 to location 9. It would
not be possible for one processor to add to location 9 and another to location 11. In our model
each processor has an address register. Using SIMLAD, the previous example could be “Add
1 to the location specified by the address register”, where one processor has a 9 in its register,
another an 11. This does not violate the SIMD philosophy. All processors perform the same
action at the same time, but they are not restricted to performing it on the same area of their
local memories.

The use of Indirect addressing is a very powerful tool, especially when dealing with archi-
tectures such as the CM-2, where the local memory is no longer confined to a few thousand
bits, as in the MPP, but is 64K bits. As yet, however, this feature has not been widely exploited
in SIMD architectures. Here we explore one facet of this for a particular class of problems.

2 The General Problem

I

There are many problems involving the same computation on different data points which have
different convergence rates. This is prevalent in the solution of differential equations, particu-
larly techniques using mesh refinement. Perhaps the simplest problem for illustrating different
convergence rates is the solution of the Mandelbrot set which is described in detail later.

2

ORIGINAL PAGE Is
OF POOR QUALln

Suppose that each processor is responsible for one datum. The required computation will
occur in each processor, and as each processor reaches it’s termination condition, it will disable
itself. Obviously, completion of the entire task is dependent on the number of iterations required
by the last processor that finishes. For example, we might aay:

enable a l l processor;
for 111 t o maxiterations

fora l l enabled processors
perform the computation;
if convergence reached disable processor;

If the average number of iterations required before convergence is much smaller than the
maximum number, then many processors will be idling waiting for the last few to finish. If
there is only one datum per processor, not much that can be done to hasten this process, But,
if each processor is responsible for the same computation on multiple data items, then the
situation is quite different.

It is reasonable to assume that using some of the new SIMD computers each processor could
be responsible for upwards of 1000 data elements. In the classic SIMD mode of computation
the code would be identical to the fragment given above and would iterate through the data
elements. In the pseudo-code below, the notation Vector x[lOOO] means that each processor
holds a local variable X, which contains 1000 elements. If there are 20,000 processors, there
would be 20,000 x 1,000, or 20,000,000 data elements in total.

Vector X[10001 ;
for h= f t o 1000 /* f o r a l l data elements */

enable a l l processor;
f o r i=1 t o maxiterations

f o r a l l enabled processors
perform the computation on datum x[h] ;
if convergence reached disable processor;

In this case, computation would take time 1000 x rnaziterations because we assume that a t
least one of the processors is computing a point that will require maxiterations for convergence.
Hence, this solutions is governed by the maximum number of iterations. In cases where the
mean number of iterations required for convergence is significantly less than the maximum,
many processors will be sitting idle, wasting cycles. In the next section we will see that by
using indirect addressing and invoking statistics and the law of large numbers, a solution
dependent on the average number of iterations rather than the mazimum, can be obtained.

S The Solution

The solution is a valuable technique not currently used in SIMD programming. We are assuming
a method where each processor is responsible for the computation for a large number of points.

3

In the above code fragment, computation is performed on each local z[i] for the same i, and
all processors must converge on a solution before they proceed to iterate on the next point.
This is necessary in the “classic” SIMD model, but in SIMLAD a more natural approach can
be taken. When a processor has finished computing on element z[i] , either because it has
converged on a solution or because it has reached the limit on the number of iterations, it
moves on to element z[i + 11. It doesn’t care if its neighboring processor is still iterating on its
local element %[;I. If there are a sufficiently large number of points in each processor, and the
probability of convergence is random, then by using this technique all processors should finish
at about the same time with high probability. This time should be proportional to the average
number of iterations required for each point times the number of points in each processor.

In the pseudo code below for this method, the Vector data structure implies that there is
one copy of this data structure on each processor. That is, each processor has it’s own data
array X with 1000 elements. Each processor has a local index into this data array and a local
counter to keep track of the number of iterations it has performed on the current point. The
FORALL statement subselects the processors whose local data elements meet the specified
conditions.

Vector X [l O O O l . /* loca l data */
I N D E X ,
ITERS;

/* l oca l pointer i n to X array */
/* number of i t e r a t i o n s for t h a t data point*/

FORALL processors
I N D E X <- 1; /* a l l processors s t a r t a t the first */
ITERS <- 0;

while (some-processors-busy) /* termination f o r e n t i r e program*/

perform computation on datum XCINDEX];
ITERS <- ITERS + 1;

f o r a l l processors with INDEX<= 1000

/* for those processors whose elements converged, o r reached
the maximum allowed, proceed t o the next datum */

FORALL processors t ha t have converged
OR (ITERS > Maxiterations) THEN

I N D E X <- I N D E X + 1; /* proceed t o next datum*/
ITERS <- 0; /* r e s e t i t e r a t i o n count */

The actual implementation of this method is slightly more complicated. The different tests
can be parameterized for better efficiency. For example, the above code checks for convergence
and proceeds to fetch the next point on every iteration. Since a local-indirect fetch generally
takes more cycles than a normal memory reference, it may be desirable to fetch a new point
every tenth cycle. Likewise, it is not necessary to check for global convergence of all processors
on every cycle. Let I, represent the global convergence interval, and I1 represent the interval

4

before loading the next data point once convergence is rtmched. We introduce a scalar integer
counter to check the number of iterations.

done <- FALSE;
count <- 0 ;
while NOT (done)

f o r a l l processors with INDEX<= 1000
perform computation on datum XCINDEX];
IT- <- ITERS + 1;
FORALL converged OR (ITERS > Maxiterations) THEN

s e t processor converged;
i f (count MOD I1 = 0) THEN /* i f new load in t e rva l */

f o ra l1 converged processors /* for those processors */
INDEX <- INDEX + 1;
ITERS <- 0;

count <- count + 1;
i f (count MOD I g = 0)

/* t h a t a r e done computing */
/* advance t o the next point*/

if (global-convergence) done = TRUE;

This parameterized version allows one to tune the solution to the characteristics of the
architecture and problem.

4 Analysis

The pure SIMD version of the algorithm takes time proportional to
P * MazI * Tc.
where Max1 is the maximum number of iterations and Tc is the time for one iteration of the
computation.

On the other hand, for the SIMLAD model, assuming that pointe are randomly distributed
among the processors, and that there are a sufficiently large number of points per processor,
then we can approximate the time for execution by
P * M e a d * Tc
where M e a d is the mean of the convergence rate for all points. We justify this in the following
way. We know that the overall time is governed by the maximum time required for a single
processor to converge. How do we know what the convergence rate of a single processor is?
By the law of large numbers we know that for a sufficiently large random sample the mean of
the sample will approach the mean of the distribution. Hence, for all processors the overall
number of iterations will approach P * M e a d .

This simplified characterization implies that the second method would always be superior,
but omits the overhead intrinsic in the new algorithm. A more complete characterization can
be given by: [P * (Mean1 + 1 ~ / 2) * To] + Tc/2 * To

and

5

To = Tc + TL/IL + Tc/k
where

0 TL is the time required to perform an indirect load

0 TG is the time required to perform a global convergence check

0 IL is the frequency interval necessary to perform an indirect load

0 IG is the frequency interval necessary to perform a global convergence check.

0 TO is the overall time required for one iteration, which includes performing the compu-
tation and the overhead for the test.

In this characterization the time required to finish an iteration is not simply M e a d , but has
the additional time of TL/~. This comes from the fact that a value will converge, but the
processor cannot proceed to the next value until the indirect load has occurred which only
happens every Tt times. Once converged, a processor has to wait at most TL cycles. However,
in the best case, the TL check occurs the very cycle that the point converges, so the processor
does not wait at all. Hence, on average, the processor has to wait an extra TL cycles once it
has stopped. (For IL = 1, this factor of Th/2 disappears, but writing this unique case in the
equation is rather messy, and is not represented here.

To is a fairly straightforward derivation. It is Tc plus the overhead for global checking and
load. Since the the global check and Indirect load are only executed every IC and IL time
intervals respectively, then only that fraction of the computation is included in the time for
one iteration.

The second term in the equation, (Ic/2) * TO, is an insignificant portion of the overall
execution time, but is included for completeness. Similar to the the T L / ~ term, once all
processors have finished execution they may have to wait for the global convergence check to
come mound. Because IC tends to be small compared to the overall number of iterations, and
the equation is an approximation, the equation is more simply characterized by:

P * (M e a d + I L / ~ * (Tc + TL/IL + Tc/Ic)
When comparing the SIMD and SIMLAD approaches, in cases where the Tc is large, the

overhead is insignificant so the mean only haa to be slightly less than the maximum to benefit.
For these situations the new algorithm is clearly superior.

If the computation is relatively small, and the mean convergence time is large but still less
than the maximum, it is still possible to realize significant improvement by having a large IF
and IC, which decreases the overhead. For example, if MeanV = 500 and MaxV = 1000, and
computation is equal to overhead, then if IL = 1, so that we are testing every time, then the
new algorithm would just break even or be even a little worse. But, if IL = 100, then the
number of iterations increases to 550, but the overhead becomes insignificant providing better
L n a 40% improvement.

As we have previously stated, these evaluations are based on the fact that the processors
have a random distribution of the points. The section on Load Balancing will address some of
these issues for the solution to the Mandelbrot set.

6

5 Mandelbrot Simulations

t

The computation of the Mandelbrot set was chosen because it illustrates the concept clearly.
A good description of implementing the set can be found in Scientific American [4], and a more
mathematical discussion is given by Devaney [3]. While being a good problem for pedagogical
purposes, the computation is so small that the overhead involved in indirect addressing is larger
than in problems of greater complexity, but benefits are still significant. The technique extends
naturally to more complicated algorithms.

The recursive statement used to define the set is z = z2 + c, where c is a point in the
complex plane. We stop the recursive Computation when t > 2, indicating that it is diverging,
or when iterations > 1O00, whichever comes first.

We simulated this problem for a 100 processor system with 100 memory locations. Results
were positive. Using the "standard" approach, the computation would take maziterations *
memorysize, which in our case would be 100,OOO iterations. We found that this could be
decreased significantly, although performance varies over different regions and granularity of
the Mandelbrot set.

For example, we ran the problem on the region (*l&l), and achieved completion in 82,175
iterations, a 20%improvement. However, over this region we noted that the total average
number of iterations needed was actually 54,529, so there was actually room for almost 50%
improvement. Unfortunately, in the Mandelbrot set, as in most real problems, the convergence
rate is not uniformly distributed, but rather has areas in which all points tend to converge very
quickly or very slowly. For further improvements we turn to the technique of load-balancing.

6 Load Balancing

The methodology of load balancing is traditionally not applied to SIMD architectures because
it appears to be contrary to the synchronous single control nature of the system. However,
we have shown here that a single control does not preclude working on different areas of the
data. The key to the success of the method presented here is to have enough points per
processor and the points should be representative of the whole. Under these conditions the
overall average convergence rate at each processor is almost the same and is close to the mean
of the convergence.

As previously mentioned, in the Mandelbrot set the convergence rate is not uniformly dis-
tributed. Hence the straightforward approach we used of allocating one column of the complex
plane to a processor is not necessarily the most effective for this method of computation.

We tried two additional approaches for allocating points to processors. A fairly simple
technique takes the column allocation method method and skewed each row of data randomly
in the x direction 80 that the regions were not quite aligned with the processors. For example, for
411 in all processor we might skew the value over 3 processors, for x[2] perhaps skew a negative
22 processors. The skewing method has an advantage that it provides some alleviation from

'See [5] for a general reference on Load Balancing Techniques.

7

the processors being assigned a contiguous region in the plane, but does not require expensive
overhead computation to achieve this. Skewing in this manner is just a local computation
baaed on the stride and skew amount. A more complicated approach involves performing a
random permutation of the points as assigned to processors. Since random permutations are
computationally expensive, this is the most extravagant of the methods.

As one might suspect, in the simulations performed, not counting set-up times, the com-
pletion rates varied relative to the complexity of the data distribution. The most permutation
method finished first, the skewing method next, and the simple column allocation last. A
surprising feature is that the simplest method, just assigning each processor a column in the
plane, frequently performed well simply because the number of points per processor is fairly
high. Even though there is some locality, the area picked still had significant variation. While
the random permutation method usually performed the best it was not significantly better
than the row skewing method and the overhead of the set-up time simply does not justify the
performance gains. We advise row-skewing as a general optimization for this problem.

With the Mandelbrot set, the variation in mean convergence rate varies significantly de-
pending on the region and granularity picked. The table below gives some empirical results
obtained by our simulator for different regions. The simulator had 100 processors, each respon-
sible for 100 points. (Actual hardware implementation of the SIMLAD variety described here
would be expected to have at least 10,000 processors each with over 1,000 points per processor.)
For these simulation parameters, the maximum number of iterations - the number required
by a pure SIMD model - would be 10,000 iterations. The table gives three different iteration
values. The first iteration value is the mean number of iterations for processor completion; this
is be the ideal minimum. The second iteration value is the number of iterations using SIMLAD
solution method presented here, but without load balancing, just assigning each column in the
plane to a processor. The third iteration value gives the number of iterations when using the
simple skewed load balancing technique. We follow the iteration number by two percentages.
The first is the percent improvement of the SIMLAD method as compared to the non-indirect
method. The second is the efficiency of the method; that is, how close it comes to the average
number of iterations per processors, which is the theoretical minimum.

The table shows a variety of results from different regions in the complex plane.

~~

real

(-2.0,+0.5)
(-l.O,+l.O)
(-0.6,-0.5)
(+.26,+.27)
(-1.26,-1.24)

Iterations needed to solve Man
~

imaginary avg
iters

(-1.25,+1.25) 24875
(-l.O,+l.O) 35462
(-0.6,-0.5) 34512
(+O.O,+.Ol) 65101
(+.01,+.03) 83403

new
iters
91079
68185
54456
100000
97643

%impr %eff newLB
iters

9 27 29762
32 52 41294
46 63 38566
0 65 70295
2 85 88320

nts each
%impr

70
59
61
30
12

%eff

84
86
89
93
94

The method described above uses a static load balancing scheme. We allocate the points

8

,

before computation begins and hope that we did a good job. Another alternative is dynamic
load balancing. There are many forms that dynamic load-balancing can take, but dynamic load
balancing involves communication, which is expensive in SIMD architectures. One approach is
to have processors that have finished computing all their points reach over and grab some from
their direct local neighbors. It is not clear that the overhead involved justifies the approach -
it is an interesting area for future study.

7 Conclusions

As SIMD architectures develop and become more widespread new programming paradigms will
arise to make efficient use of them. In this paper, we presented a method for using local indirect
addressing to achieve faster solutions for some problems with data-dependent convergence rates.
We investigated at a simple case, the Mandelbrot set, and achieved significant success. The
traditional MIMD technique of load balancing proved highly effective, exemplifying the greater
freedom and power of the SIMLAD approach. The general mechanism described here is a
powerful technique that will no doubt become widely used in data parallel programming as
SIMLAD architectures become more available.

References

[l] K.E. Batcher, “Design of a Massively Parallel Processor”, IEEE Trans. on Computer,
September 1980, pp. 836-840.

[2] E. Davis, J. Reif, “The Architecture and Operation of the BLITZEN Processing Element”,
3rd Intl. Conf. on Supercomputing, May 1988.

[3] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, Benjamin Cummings Pub-
lishing Co., Menlo Park, 1986.

[4] Dewdney, A.K, “Computer Recreations: A Computer Microscope Zooms in for a Look at
the Most Complex Object in Mathematics”, Scientijk American, August 1985, pp. 16-21.

[5] G.C. Fox, et al, Solving Problems on Concurrent Processors, Vol l., Prentice Hall, 1988.

[6] W.D. Hillis, The Connection Machine, MIT Press, 1985.

[7] S.F Reddaway, “DAP - a distributed array processor”, First Annual Symposium on Com-
puter Architecture, (IEEE/ACM), Florida, 1973.

[8] S. Tomboulian, D. Middleton, “Evaluating Local Indirect Addressing in SIMD Processors”,
ICASE Report(89-30) in preparation, Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton VA.

9

Report Documentation Page

I. Report No.
NASA CR- 18 1847
ICASE Report No. 89-33

2. Government Accession No. 3. Recipient's Catalog No.

INDIRECT ADDRESSING AND LOAD
BALANCING FOR FASTER SOLUTION TO
MANDELBROT SET ON SIMD ARCHITECTURES

4. Title and Subtitle

May 1989

6. Performing Organization Code c 5. Report Date

7. Authorls)

Sher r y l Tomboul i a n

505-90-21-01

I n s t i t u t e f o r Computer A p p l i c a t i o n s i n Sc ience
NASl-18605

9. Performing Organization Name and Address

and Eng inee r ing

8. Performing Organization Report No.

89-33

10. Work Unit No.

H 5
Mail S top 132C, NASA Langley Research C e n t e r

nn U A 3
2. Spo*ng Abency Name and Address

13. Type of Report and Period Covered

C o n t r a c t o r ReDort

17. Key Words (Suggested by Authods))

N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n
Langley Research Cen te r

18. Distribution Statement

14. Sponsoring 4gency Code

19. Security Classif. (of this report)

Uncl as s i f i ed
20. Security Classif. (of this page) 21. No. of pages

Un c 1 as s i f i e d 10

I Hampton, VA 23665-5225

22. Price

A0 2

5. Supplementary Notes

Langley Techn ica l Monitor:
R icha rd W. Barnwell

F i n a l Report

6. Abstract

SIMD computers wi th l o c a l i n d i r e c t a d d r e s s i n g a l l o w programs t o have queues
and b u f f e r s , making c e r t a i n k i n d s of problems much more e f f i c i e n t . I n
p a r t i c u l a r we examine a c lass of problems c h a r a c t e r i z e d by computat ions on d a t a
p o i n t s where t h e computat ion i s i d e n t i c a l , b u t t h e convergence ra te i s d a t a
dependent . Normally, i n t h i s s i t u a t i o n , t h e a l g o r i t h m t i m e i s governed by t he
maximum number of i t e r a t i o n s r e q u i r e d by e a c h p o i n t . Using i n d i r e c t a d d r e s s i n g
a l l o w s a p r o c e s s o r t o proceed t o t h e n e x t d a t a p o i n t when i t i s done, r educ ing
t h e o v e r a l l number of i t e r a t i o n s r e q u i r e d t o approach the mean convergence r a t e
when a s u f f i c i e n t l y l a r g e problem set is s o l v e d . Load b a l a n c i n g t e c h n i q u e s can
be a p p l i e d f o r a d d i t i o n a l performance improvement. S i m u l a t i o n s of t h i s
t e c h n i q u e a p p l i e d t o s o l v i n g Mandelbrot S e t s i n d i c a t e s i g n i f i c a n t performance
g a i n s .

SIMD p r o c e s s i n g 61 - Comp. Prog. & Software
64 - Numerical A n a l y s i s

U n c l a s s i f i e d - Unl imi t ed

